संख्याएं: फार्मूला, ट्रिक, उदहारण और ऑनलाइन टेस्ट

संख्याओं को दर्शाने की कई प्रणालियाँ हैं। इन प्रणालियों में सबसे अधिक प्रचलित प्रणाली दाशमिक प्रणाली है जिसे हिन्दू-अरेबिक संख्याकन पद्धति भी कहते हैं। इस प्रणाली के अंतर्गत किसी संख्या को दर्शाने के लिए हम चिह्न/संकेतों (0, 1, 2, 3, 4, 5, 6, 7, 8 और 9) का उपयोग करते हैं जिन्हें अंक कहते हैं। इन्हीं दस अंकों का उपयोग हम किसी संख्या को दर्शाने के लिए करते हैं।

संख्याओं के प्रकार

प्राकृत संख्याएँ: वस्तुओं को गिनने के लिए जिन संख्याओं का प्रयोग किया जाता है, उन संख्याओं को गणन संख्याएँ या प्राकृत ‘संख्याएँ’ कहते हैं।
जैसे- 1, 2, 3, 4, 5, ………..
पूर्ण संख्याएँ: प्राकृत संख्याओं में शून्य को सम्मिलित करने पर जो संख्याएँ प्राप्त होती हैं उन्हें ‘पूर्ण संख्याएँ’ कहते हैं।
जैसे- 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 ………….
पूर्णांक संख्याएँ: प्राकृत संख्याओं में शून्य एवं ऋणात्मक संख्याओं को भी सम्मिलित करने पर जो संख्याएँ प्राप्त होती हैं, उन्हें ‘पूर्णांक संख्याएँ’ कहते हैं।
जैसे- ……… -3, -2, -1, 0, 1, 2, 3, ……
सम संख्याएँ: वे संख्याएँ जो 2 से पूर्णतः विभाजित हो जाती हैं उन्हें ‘सम संख्याएँ’ कहते हैं। इस प्रकार 2, 4, 8, 6, 26 …….. आदि ‘सम संख्याएँ’ हैं।
विषम संख्याएँ: वे संख्याएँ जो 2 से पूर्णतः विभाजित नहीं होती हैं उन्हें ‘विषम संख्याएँ कहते हैं।
जैसे- 1, 3, 5, 11, 17, 29, 39 …….. आदि ‘विषम संख्याएँ’ हैं।
अभाज्य संख्याएँ: वे संख्याएँ जो स्वयं और 1 के अतिरिक्त अन्य किसी भी संख्या से विभाजित नहीं हो उन्हें ‘अभाज्य संख्याएँ’ कहते हैं।
जैसे- 2, 3, 7, 11, 13, 17 ………. आदि ‘अभाज्य संख्याएँ’ हैं। ‘1’ एक विशेष संख्या है जो न तो अभाज्य संख्या है और न ही भाज्य संख्या है।
भाज्य संख्याएँ: वे संख्याएँ जो स्वयं और 1 के अतिरिक्त अन्य किसी संख्या से पूर्णतः विभाजित हो जाती है तो उसे भाज्य संख्या कहते हैं।
जैसे- 4, 6, 8, 9, 10, …………
परिमेय संख्याएँ: वे संख्याएँ जिन्हें p/q के रूप में लिखा जा सके ‘परिमेय संख्याएँ’ कहलाती हैं जहाँ p और q दोनों पूर्णांक हो लेकिन q कभी शून्य न हो।
जैसे- 4, 3/4, 0 ……… आदि ‘परिमेय संख्याएँ’ हैं।
अपरिमेय संख्याएँ: वे संख्याएँ जिन्हें p/q के रूप में न लिखा जा सके अपरिमेय संख्याएँ कहलाती है। जहाँ p और q दोनों पूर्णांक हो लेकिन q कभी शून्य न हो।
जैसे- number-system-f-h-10373.png…… आदि अपरिमेय संख्याएँ हैं।
वास्तविक संख्याएँ: वे संख्याएँ जो या तो परिमेय हैं अथवा अपरिमेय ‘वास्तविक संख्याएँ’ कहलाती हैं।
जैसे- 8, 6, 2 + number-system-f-h-10379.png, 3/5, …….. आदि वास्तविक संख्याएँ हैं।
सह-अभाज्य संख्याएँः ऐसी संख्याओं के जोड़े जिनके गुणनखण्डों में 1 के अतिरिक्त कोई भी उभयनिष्ठ गुणनखण्ड न हो उन्हें ‘सह-अभाज्य संख्याएँ’ कहते हैं। जैसे- 16, 21 में 1 के अतिरिक्त अन्य कोई उभयनिष्ठ गुणनखण्ड नहीं है।
युग्म-अभाज्य संख्याएँ: ऐसी अभाज्य संख्याएँ जिनके बीच का अंतर 2 हो ‘युग्म-अभाज्य संख्याएँ’ कहलाती हैं। जैसे- 11, 13 युग्म-अभाज्य संख्याएँ हैं।

भिन्न (Fractions)

यदि किसी संख्या को p/q के रूप में जहाँ p और q पूर्णांक हैं तथा q ≠ 0 लिखा जाये तो ऐसी संख्या को भिन्न कहते हैं। भिन्न में भाज्य को एक रेखा के उपर तथा भाजक को रेखा के नीचे लिखा जाता है, ऊपर की संख्या अर्थात भाज्य को अंश तथा नीचे की संख्या अर्थात भाजक को हर कहा जाता है। number-system-f-h-10385.png आदि भिन्न के उदाहरण हैं जिसमें 1, 4 , 6 अंश तथा 3, 5, 7 हर हैं।

भिन्नों के प्रकार

उचित भिन्न: यदि भिन्न का अंश हर से कम हो, तो भिन्न को उचित भिन्न कहते हैं।
जैसे- number-system-f-h-10392.png …. इत्यादि।
अनुचित भिन्न: यदि भिन्न का अंश हर से बड़ा हो तो भिन्न को अनुचित भिन्न कहते हैं।
जैसे- number-system-f-h-10399.png …. इत्यादि।
मिश्र भिन्न: यदि भिन्न एक पूर्णांक तथा भिन्न से मिलकर बनी हो तो भिन्न को मिश्र भिन्न कहते हैं।
जैसे number-system-f-h-10405.png…… इत्यादि।
मिश्रित भिन्न: यदि अंश या हर या दोनों भिन्न हो, तो भिन्न को मिश्रित भिन्न कहते हैं।
जैसे- number-system-f-h-10411.png…… इत्यादि।
दशमलव भिन्न: वे भिन्न जिनके हर 10, 10² या 10³ इत्यादि हो, तो दशमलव भिन्न कहलाते हैं।
जैसे- number-system-f-h-10417.png……. इत्यादि।
वितत भिन्न: सामान्य तौर पर किसी भिन्न के हर या कभी-कभी अंश में किसी संख्या के जोड़ने या घटाने से बनने वाले भिन्न को वितत भिन्न कहते हैं।
जैसे- number-system-f-h-10423.png

भिन्नों की तुलना

यदि दी गई भिन्नों के हर समान हो, तो सबसे बड़े अंश वाली संख्या बड़ी होगी।
जैसे number-system-f-h-10429.png में number-system-f-h-10435.png
यदि दी गई भिन्नों के अंश समान हो, तो सबसे छोटे हर वाली संख्या बड़ी होगी।
जैसे- number-system-f-h-10443.png में number-system-f-h-10449.png
यदि दी गई भिन्नों में उनके अंशों और हरों का अंतर समान हो, तो सबसे छोटे अंश वाली संख्या सबसे बड़ी होगी, जबकि अंश हर से बड़ा है।
जैसे- number-system-f-h-10457.png में number-system-f-h-10463.png
यदि दी गई भिन्नों में उनके अंशों और हरों का अंतर समान हो, तो सबसे बड़े अंश वाली संख्या सबसे बड़ी होगी, जबकि अंश, हर से छोटा है।
जैसे- number-system-f-h-10470.png में number-system-f-h-10476.png

तिर्यक विधि द्वारा भिन्नों की तुलना

यह भिन्नों की तुलना के लिए एक संक्षिप्त विधि है। इस विधि के द्वारा हम सभी प्रकार के भिन्नों की तुलना कर सकते हैं। उदाहरणस्वरूप इस विधि द्वार 5/9 और 5/7 की तुलना इस प्रकार करेंगे।
number-system-f-h-10483.png
यहाँ 36 बड़ी संख्या है अतः number-system-f-h-10489.png

विभाज्यता की जाँच (Divisibility Rules)

  • कोई भी संख्या 2 से पूर्णतः विभाज्य होगी, जब उसका इकाई का अंक 0, 2, 4, 6, या 8 होगा।
  • कोई भी संख्या 3 से पूर्णतः विभाज्य होगी, जब उस संख्या के अंकों का योग 3 से पूर्णतः विभाज्य होगा।
  • कोई भी संख्या 4 से पूर्णतः विभाज्य होगी, जब उसके अन्तिम दो अंकों से बनी संख्या 4 से विभाजित हो या अन्तिम दोनों अंक शून्य हो।
  • कोई भी संख्या 5 से पूर्णतः विभाज्य होगी, जब उसका इकाई का अंक 0 या 5 होगा।
  • कोई भी संख्या 6 से पूर्णतः विभाज्य होगी, जब वह संख्या सम संख्या होगी और उसके अंको का योग 3 से विभाज्य हो।
  • कोई भी संख्या 7 से पूर्णतः विभाज्य होगी:
    1. यदि किसी संख्या में लगातार 3 बार 2 समान अंक आए उदाहरणस्वरूप – 626262, 383838
    2. यदि संख्या इकाई के अंक को दोगुना करके, संख्या के इकाई के अंक को हटाकर प्राप्त हुई संख्या से घटाने पर 7 गुणज मिलता है।
    उदहारण: क्या 348 ‘7’ से विभाज्य है?
    स्टेप1:अंतिम अंक हटा दीजिये  जो की 8 है।  अब संख्या बचती है 34
    स्टेप2:अब 8 को डबल करने पर 16 मिलता है और अब 34 में से 16 घटा दीजिये। 34 – 16 = 18 और 18 ‘7’ से विभाज्य नहीं है, इसलिए 348 भी 7 से विभाज्य नहीं है.
    3. जब किसी संख्या का 6 बार, 12 बार, 18 बार …… पुनरावृति हुआ, तो वह संख्या 7 से पूर्णतः विभाज्य होगी।
  • जब किसी संख्या के अन्तिम तीन अंक शून्य हों अथवा अंतिम तीन अंकों से बनी संख्या 8 से पूर्णतया विभाजित हो, तो वह 8 से पूर्णतः विभाज्य होगी।
  • कोई भी संख्या 9 से पूर्णतः विभाज्य होगी, जब उस संख्या के अंकों का योग 9 से विभक्त होगा।
  • कोई भी संख्या 10 से पूर्णतः विभाज्य होगी, यदि उसका इकाई का अंक 0 हो।
  • यदि किसी संख्या के विषम स्थानों पर स्थित अंकों के योग तथा सम स्थानों के योग का अन्तर 0 या 11 का गुणज है, तो वह संख्या 11 पूर्णतया विभाज्य होगी।
  • यदि किसी संख्या की पुनरावृति सम में हुई हो, तो वह संख्या 11 से पूर्णतः विभाज्य होगी। जैसे-5555
  • यदि कोई संख्या 3 और 4 से विभाज्य है, तो वह 12 से पूर्णतः विभाज्य होगी।
  • यदि किसी संख्या के अंतिम दो अंकों से बनी संख्या 25 से विभाज्य है या अन्तिम दोनों अंक शून्य हैं, तो वह संख्या 25 से पूर्णतः विभाज्य होगी।
ADMISSION OPEN -> Special Foundation Batch for All Banking Exams, Starts from: 20 MARCH 2025 at 9:30 AM | Regular Live Classes Running on Safalta360 App. Download Now | For more infomation contact us on these numbers - 9828710134 , 9982234596 .

TOP COURSES

Courses offered by Us

Boss

BANKING

SBI/IBPS/RRB PO,Clerk,SO level Exams

Boss

SSC

WBSSC/CHSL/CGL /CPO/MTS etc..

Boss

RAILWAYS

NTPC/GROUP D/ ALP/JE etc..

Boss

TEACHING

REET/Super TET/ UTET/CTET/KVS /NVS etc..